Student Graduation Prediction System In The Mbkm Program Using The Mamdani Fuzzy Method

Authors

  • Muthiah Riani Harahap Universitas Malikussaleh
  • Safwandi
  • Rini Meiyanti

Abstract

This study aims to develop a graduation prediction system for the MBKM Program using the Fuzzy mamdani method. The system is designed to process various academic criteria such as GPA, internship experience, and other supporting documents to provide an accurate projection of graduation probability. The implementation was carried out using data from 61 students of the Informatics Engineering Department at Universitas Malikussaleh. The Fuzzy mamdani method was applied through stages of fuzzification, rule formation, fuzzy inference, and defuzzification to produce the final prediction. The test results show that this method is effective in handling uncertainty and provides a high prediction accuracy, where 67% of students were predicted to graduate, and 33% were not. This system can be used by academic staff to evaluate student performance and provide more precise guidance, as well as to help students plan their studies to achieve graduation in the MBKM Program.

References

[1] https://kampusmerdeka.kemdikbud.go.id/program

[2] A. Alwendi and Andi Saputra Mandopa, “Analysis of Student Satisfaction Level on its Influence in Courses Using Fuzzy Logic,” Salus Publica J. Community Serv., vol. 1, no. 2, pp. 35–40, 2023, doi: 10.58905/saluspublica.v1i2.89.

[3] P. N. Napitupulu, A. R. Damanik, J. E. Napitupulu, and A. Info, “Jurnal JPILKOM ( Jurnal Penelitian Ilmu Komputer ),” vol. 1, no. 1, 2023.

[4] dan T. R. I. Kementerian Pendidikan, Budaya, Riset, “Apa itu Program Magang & Studi Independen Bersertifikat?,” 2022. https://kampusmerdeka.kemdikbud.go.id/program/magang/detail

[5] N. S.Kom., M.Kom (SCOPUS ID=ID: 57201646662), U. M. Putri Nasution, H. A.-K. Aidilof, and B. Bustami, “Implementation of Fuzzy C-Means to Determine Student Satisfaction Levels in Online Learning,” Sistemasi, vol. 11, no. 1, p. 121, 2022, doi: 10.32520/stmsi.v11i1.1638.

[6] S. N. Rizki, “Fuzzy Implementation in The Selection of A Chieving Employees at PT. Sumber Barkah using Matlab Software,” IJISTECH (International J. Inf. Syst. Technol., vol. 5, no. 2, p. 170, 2021, doi: 10.30645/ijistech.v5i2.128.

[7] N. Raras and P. Jingga, “Implementasi Algoritma Regresi Linear Dalam Sistem Prediksi Pendaftar Mahasiswa Baru Sekolah Tinggi Teknologi Indonesia Tanjungpinang,” pp. 13–19, 2022.

[8] Junaidi, “Implementasi Fuzzy Logic Dengan Metode Mamdani Untuk Sistem Pendukung Keputusan Kinerja Dosen,” J. Inf. Syst., vol. 3, no. 1, pp. 17–27, 2023, doi: 10.61488/jis.v3i1.256.

[9] M. Irfan, C. N. Alam, and D. Tresna, “Implementation of Fuzzy Mamdani Logic Method for Student Drop Out Status Analytics,” J. Phys. Conf. Ser., vol. 1363, no. 1, 2019, doi: 10.1088/1742-6596/1363/1/012056.

[10] D. Abdullah, Fajriana, C. I. Erliana, M. Chaizir, and A. Putra, “Web GIS-Based Forecasting of Earthquakes Using Fuzzy Time Series Method,” Int. J. Intell. Syst. Appl. Eng., vol. 11, no. 1, pp. 363–374, 2023.

[11] R. A. Ginting, D. Febrian, F. D. Mobo, and S. H. Dehham, “Decision Support System in Determining the Job Waiting Period for Graduates of Unimed Using the Mamdani Method of Fuzzy Logic,” vol. 7, pp. 275–286, 2023.

[12] Z. N. Jati, T. Hastono, and F. Andrian, “Prediksi Produksi Bawang Merah di Kota Yogyakarta menggunakan Metode Fuzzy Mamdani,” J. Publ. Ilmu Komput. dan Multimed., vol. 2, no. 2, pp. 129–137, 2023, [Online]. Available: https://doi.org/10.55606/jupikom.v3i1

Downloads

Published

2024-12-27