Contagion Analysis of Plantation Commodity Producing Regions in Aceh Province Using Bayesian Inference

Authors

  • Juliawati Universitas Malikussaleh
  • Juliawati Universitas Malikussaleh
  • Mukti Qamal Universitas Malikussaleh
  • Said Fadlan Anshari Universitas Malikussaleh

Keywords:

Aceh, Contagion Analysis, Social Network Analysis

Abstract

The commodity-producing region is one of the plantation sectors with significant potential for economic growth in Aceh Province. The spread level between commodities owned by regions within the network is called “contagion,” which means that one commodity will influence a region, leading to a greater focus on that commodity within the network, and a region will influence other regions. With the diversity of commodities across various areas, a comprehensive analysis and visualization of the network formed among commodity producing regions are conducted using a Social Network Analysis (SNA) approach. Thus, Bayesian inference can reveal the network of each region that has relationships among the variables used to form a graph with the desired representation. This network analysis result can provide an overview of Aceh Province's plantation data through the network graph visualization among commodity-producing regions and the network graph of commodity production levels by region.

Keywords: Aceh; Contagion Analysis; Social Network Analysis

References

[1] Suci Amalia, “Analisis Sektor Perkebunan Sebagai Pendorong Pertumbuhan Ekonomi Masyarkat Ditinjau Dari Perspektif Ekonomi Islam,” Universitas Islam Negeri Raden Intan Lampung, Fakultas Ekonomi Dan Bisnis Islam, Bandar Lampung, 2017.

[2] I. Manyamsari and P. Agribisnis Fakultas, “Pengembangan Komoditas Unggulan Perkebunan Berbasis Modal Sosial dan Peluang Investasi di Aceh,” Jurnal Penelitian Agrisamudra, vol. 6, no. 1, 2019.

[3] distanbun.acehprov.go.id, “Statistik Perekebunan Aceh tahun 2022,” https://distanbun.acehprov.go.id.

[4] N. Laylatul Husna and F. Bimantoro, “Sistem Pakar Diagnosa Awal Penyakit Mata dengan Metode Bayesian Network (Expert System for Early Diagnosing of Eyes Diseases with Bayesian Network Method).” [Online]. Available: http://jcosine.if.unram.ac.id/

[5] C. Yusainy, A. F. Chawa, and S. Kholifah, “Social Data Analytics sebagai Metode Alternatif dalam Riset Psikologi,” Buletin Psikologi, vol. 25, no. 2, pp. 67–75, Dec. 2017, doi: 10.22146/buletinpsikologi.27751.

[6] M. A. Yusuf, I. Caisarina, and S. Nadia, “PENGEMBANGAN WILAYAH MELALUI SEKTOR UNGGULAN: PERSEPSI STAKEHOLDER,” JURNAL REKAYASA, vol. 11, no. 2, pp. 136–144, Dec. 2021, doi: 10.37037/jrftsp.v11i2.101.

[7] N. Mona, J. Sosial, and H. Terapan, “KONSEP ISOLASI DALAM JARINGAN SOSIAL UNTUK MEMINIMALISASI EFEK CONTAGIOUS (KASUS PENYEBARAN VIRUS CORONA DI INDONESIA),” 2020.

[8] Sugito and Dwi Ispriyanti, “DISTRIBUSI INVERS GAMMA PADA INFERENSI BAYESIAN,” Staf Pengajar Program Studi Statistika FMIPA UNDIP.

[9] I. Widiastuti, R. Ayuninghemi, J. Teknologi Informasi, and P. Negeri Jember Jl Mastrip Po Box, Struktur Bayesian Network untuk Penentuan Class Karakteristik Siswa pada Sistem Tutor Cerdas. 2016.

[10] F. Agus Setiawan and D. Primasari, “KREA-TIF: JURNAL TEKNIK INFORMATIKA SISTEM PAKAR IDENTIFIKASI KERUSAKAN SEPEDA MOTOR SUZUKI SATRIA F150 DENGAN TEOREMA BAYES,” vol. 8, no. 1, pp. 30–42, 2020, doi: 10.32832/kreatif.v8i2.3489.

[11] S. HUSSAIN, L. MUHAMMAD, and A. YAKUBU, “Mining Social Media and DBpedia Data Using Gephi and R,” Journal of Applied Computer Science & Mathematics, vol. 12, no. 1, pp. 14–20, 2018, doi: 10.4316/jacsm.201801002.

Downloads

Published

2024-12-27