Implementation of Triple Exponential Smoothing in Predicting Blood Stock Inventory

Authors

  • Afif Diapari Ma'aruf Lubis Afif Diapari Universitas Malikussaleh
  • Nurdin Department of Informatics, Universitas Malikussaleh, Bukit Indah, Lhokseumawe, 24353, Indonesia, nurdin@unimal.ac.id
  • Kurniawati Department of Informatics, Universitas Malikussaleh, Bukit Indah, Lhokseumawe, 24353, Indonesia, nurdin@unimal.ac.id

Abstract

Blood availability is an important component for the Indonesian Red Cross (PMI) Blood Donor Unit (UDD) in maintaining blood supplies so that blood is not wasted and there is no shortage. This study aims to test the effectiveness of using the Triple Exponential Smoothing (TES) method in predicting blood stock inventory at UDD PMI. Triple Exponential Smoothing is a forecasting method that considers seasonal patterns in data, which is relevant in predicting blood demand based on historical data. This study began by collecting historical blood stock data from January 2019 to December 2023. Next, the data was analyzed to identify seasonal patterns and trends. This method is applied to the four main blood types (A, B, AB, and O) by calculating the accuracy value using Mean Absolute Percentage Error (MAPE) and Mean Absolute Error (MAE). The results show that the TES method can accurately predict blood availability and demand, with a low MAPE value of 2.15% for blood type A. For blood type B, the MAPE value is 1.38%, blood type O is 1.03%, and blood type AB is 2.42%. This research is expected to significantly contribute to more effective and efficient bloodstock management at PMI and become an academic reference for future blood stock forecasting studies.

References

[1] W. M. I. Muttaqin, W. Ramdhan, and W. M. Kifti, “Sistem Peramalan Permintaan Darah dengan Metode Simple Moving Average,” Edumatic: Jurnal Pendidikan Informatika, vol. 6, no. 2, pp. 242–251, Dec. 2022, doi: 10.29408/edumatic.v6i2.6326.

[2] N. Puspitasari, A. Prafanto, A. Ansyori, M. Wati, and A. Septiarini, “Fuzzy Tsukamoto untuk Memprediksi Estimasi Persediaan Darah,” MIND Journal, vol. 7, no. 2, pp. 188–203, 2022, doi: 10.26760/mindjournal.v7i2.188-203.

[3] N. D. Maharani, I. G. A. Gunadi, and K. Setemen, “Prediksi Jumlah Penumpang Bus Trans Metro Dewata di PT. Satria Trans Jaya Menggunakan Double Exponential Smoothing dan Weighted Moving Average,” Jurnal Serambi Engineering, vol. VIII, no. 2, pp. 5246–5255, 2023.

[4] R. Bayu Saputro, K. Paranita Kartika, and W. Dwi Puspitasari, “Implementation of the Triple Exponential Smoothing Method for Predicting Helmet Sales Implementasi Metode Triple Exponential Smoothing untuk Prediksi Penjualan Helm,” JOINCS, vol. 4, no. 2, pp. 30–34, 2022.

[5] S. Nurrohmah and E. Kurniati, “Penerapan Metode Double Exponential Smoothing Dari Brown Untuk Peramalan Jumlah Produksi Air,” Jurnal Matematika, vol. 21, no. 1, pp. 49–60, 2022.

[6] M. Elison and R. Asrianto, “Prediksi Penjualan Papan Bunga Menggunakan Metode Double Exponential Smoothing,” JURSISTEKNI, vol. 2, no. 3, pp. 2715–1875, 2020.

[7] Umarrazi and Nurdin, “Peramalan Jumlah Keuntungan Mie Instan Pada Sumber Rezeki Kota Lpkseumawe Menggunakan Metode Triple Exponential Smoothing,” Jurnal Sistem Informasi, vol. 1, no. 2, pp. 185–218, 2020.

[8] N. D. Aridya and E. Yuniarti, “The Differences Erythrocyte and Hemoglobin Levels of Biology Students and Sports Students Universitas Negeri Padang,” vol. 8, no. 1, pp. 38–43, 2023.

[9] F. Nabila and Habibullah, “Alat Pendeteksi Golongan Darah Manusia Berbasis IoT,” Jurnal Teknik Elektro Indonesia, vol. 3, no. 1, pp. 267–276, 2022, doi: 10.24036/jtein.v3i1.240.

[10] F. Andrian, S. Martha, and S. Rahmayuda, “Sistem Peramalan Jumlah Mahasiswa baru Menggunakan Metode Triple Exponential Smoothing,” Coding : Jurnal Komputer dan Aplikasi, vol. 08, no. 01, pp. 112–121, 2020.

[11] A. A. Rizaldy, M. A. Saputra, and T. D. C. S. Wibowo, “Penerapan Metode Regresi Linear Sederhana Untuk Prediksi Penyebaran Vaksin Covid 19 di Kabupaten Cilacap 1),” Jurnal ICTEE, vol. 3, no. 2, pp. 43–50, 2023.

Downloads

Published

2024-12-27