Implementation of Data Mining for Raw Material Stock Prediction in Clothing Production Using the C4.5 Algorithm Method
Keywords:
C4.5 algorithm, Prediction, Stock, ConvectionAbstract
Al-Fatih Convection is a business engaged in the textile industry, located in Baktiya, North Aceh Regency. This company produces various uniforms for schools and workwear. Raw material stock management is a crucial aspect that affects the smoothness of the production process. Currently, the purchase of raw material stock still relies on estimation methods, often leading to excessive or insufficient stock. Therefore, a raw material stock prediction system is needed to optimize stock management.This research aims to implement the C4.5 algorithm to predict raw material stock for clothing production. The method is chosen for its ability to build a predictive model based on attributes such as material type, price, availability, and demand. Using data mining, this study generates a decision tree that helps Al-Fatih Convection prioritize which raw materials should be purchased. The results from the implementation of the C4.5 algorithm show an accuracy rate of 93%, which is expected to help reduce excessive or insufficient stock and improve operational efficiency at Al-Fatih Convection.
References
[1] Surajiyo, Rina Wahyu, and Winarni, “Hubungan Ilmu Pengetahuan Dengan Teknologi Relationship Of Science With Technology,” SEMINASTIKA , vol. 3, no. 1, pp. 182–187, 2021. https://doi.org/10.47002/seminastika.v3i1.263
[2] N. Nurdin and D. Astika, “Penerapan Data Mining Untuk Menganalisis Penjualan Barang Dengan Menggunakan Metode Apriori Pada Supermarket Sejahtera Lhokseumawe,” TECHSI-Jurnal Teknik Informatika, vol. 7, no. 1, pp. 132–155, 2019. https://doi.org/10.29103/techsi.v7il.184
[3] M. Fikry, R. Tjut Adek, F. Fadlisyah, N. Nurdin, D. Hamdana, and M. Qamal, “Data Mining for Processing of Research and Community Service by Lecturer Using Decision Tree Method,” International Journal of Psychosocial Rehabilitation, vol. 24, no. 2, pp. 367–371, 2020. https://www.psychosocial.com/article/PR201323/1564
[4] N. Nurdin, F. Fajriana, M. Maryana, and A. Zanati, “Information System for Predicting Fisheries Outcomes Using Regression Algorithm Multiple Linear,” Journal Of Informatics And Telecommunication Engineering, vol. 5, no. 2, pp. 247–258, 2022. https//doi.org/10.31289/jite.v5i2.6023
[5] A. N. Aziziah, A. I. Purnamasari, and I. Ali, “Penerapan Algoritma C4. 5 Untuk Prediksi Stok Bahan Minuman Di Cafe Semanis,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 1, pp. 292–295, 2024. https://doi.org/10.36040/jati.v8i1.8347
[6] G. L. Pritalia, “Penerapan Algoritma C4. 5 untuk Penentuan Ketersediaan Barang E-commerce,” Indonesian Journal of Information Systems, vol. 1, no. 1, pp. 47–56, 2018. https://doi.org/10.24002/ijis.v1i1.1727
[7] E. Elisa, “Penerapan Algoritma C4. 5 Untuk Memprediksi Penjualan Barang Pada Pt Batam Bangun Prathama,” Computer and Science Industrial Engineering (COMASIE), vol. 7, no. 1, pp. 127–133, 2022. https://ejournal.upbatam.ac.id/index.php/comesiejournal
[8] Dwita Elisa Sinaga, Agus Perdana Windarto, and Rizki Alfadillah Nasution, “Analisis Data Mining Algoritma Decision Tree Pada Prediksi Persediaan Obat (Studi Kasus : Apotek Franch Farma),” KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 2, no. 4, pp. 123–131, 2022, https://doi.org/10.30865/klik.v2i4.328
[9] H. Hendri, “Implementasi Data Mining Dengan Metode C4. 5 Untuk Prediksi Mahasiswa Penerima Beasiswa,” Indonesian Journal of Computer Science, vol. 10, no. 2, pp. 312–321, 2021. https://doi.org/10.33022/ijcs.v10i2.3013
[10] B. G. Sudarsono, M. I. Leo, A. Santoso, and F. Hendrawan, “Analisis Data Mining Data Netflix Menggunakan Aplikasi Rapid Miner,” JBASE - Journal of Business and Audit Information Systems, vol. 4, no. 1, 2021, https://doi.org/ 10.30813/jbase.v4i1.2729
[11] Kusrini and T. L. Emha, Algoritma Data Mining. Yogyakarta: Andi Offset, 2009.
[12] B. Q. Husaini and J. Jemakmun, “Penerapan Algoritma Decision Tree C45 untuk Klasifikasi Penjurusan Siswa,” Jurnal Teknologi Informatika dan Komputer, vol. 9, no. 1, pp. 455–470, 2023, https://doi.org/10.37012/jtik.v9i1.1512
[13] A. R. Sukma, R. Halfis, and A. Hermawan, “Klasifikasi Channel Youtube Indonesia Menggunakan Algoritma C4. 5,” Jurnal Teknik Komputer, vol. 5, no. 1, pp. 21–28, 2019. https://doi.org/10.31294/jtk.v5i1.4823
[14] Asmaul Husnah Nasrullah, “Implementasi Algoritma Decision Tree Untuk Klasifikasi Produk Laris ,” Jurnal Ilmiah Ilmu Komputer, vol. 7, no. 2, pp. 45–51, 2021. https://doi.org/10.35329/jiik.v7i2.203
[15] S. Yunita and V. N. Alaeyda, “Penerapan Algoritma C4.5 Untuk Prediksi Penerimaan Beasiswa di SD 4 Pelangsian,” ICIT Journal, vol. 8, no. 2, pp. 181–193, 2022, https://doi.org/ 10.33050/icit.v8i2.2408
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Nur Ismiza, Lidya Rosnita, Nurdin
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright Notice
Authors published in this journal agree to the following terms:
1. The copyright of each article is retained by the author (s).
2. The author grants the journal the first publication rights with the work simultaneously licensed under the Creative Commons Attribution License, allowing others to share the work with an acknowledgment of authorship and the initial publication in this journal.
3. Authors may enter into separate additional contractual agreements for the non-exclusive distribution of published journal versions of the work (for example, posting them to institutional repositories or publishing them in a book), with acknowledgment of their initial publication in this journal.
4. Authors are permitted and encouraged to post their work online (For example in the Institutional Repository or on their website) before and during the submission process, as this can lead to productive exchanges, as well as earlier and larger citations of published work.
5. Articles and all related material published are distributed under a Creative Commons Attribution-ShareAlike 4.0 International License.