Classification of Longan Types Using The Back-Propagation Neural Network Algorithm Based on Leaf Morphology With Shape Characteristics
DOI:
https://doi.org/10.29103/micoms.v3i.196Keywords:
Longan, Image processing, RGB, GLCM, Shape, Back-Propagation Neural NetworkAbstract
In Indonesia, longan fruit is abundantly accessible. The Longan fruit comes in a number of kinds, and they vary in terms of their morphology, including the characteristics of their leaves. The varieties of longan fruit are to be categorized in this study based on the shape of the leaves. The author uses the RGB color extraction function, the Grey Level Co-occurrence Matrix (GLCM), and the Shape feature to get data for each cultivar. The accuracy value is then processed using the Back-Propagation Neural Network (BPNN) technique to determine the accuracy value that will be used as a determinant of the categorization of the Longan leaf image. The eccentricity and metric parameters are key components of the method. The BPNN algorithm demonstrated its usefulness for categorizing various kinds of longan fruit leaves during testing by obtaining an accuracy of 70%.
References
J. Janick, Horticultural reviews. Volume 16. J. Wiley & Sons, 1994.
T. Prawitasari, “Fisiologi Pembungaan Tanaman Lengkeng (Euphorbia longana Lam.) pada Beberapa Ketinggian Tempat,” 2001.
P. K. Groom, B. B. Lamont, and A. S. Markey, “Influence of leaf type and plant age on leaf structure and sclerophylly in Hakea (Proteaceae),” Aust J Bot, vol. 45, no. 5, pp. 827–838, 1997.
H. Tsukaya, “Mechanism of leaf-shape determination,” Annu. Rev. Plant Biol., vol. 57, pp. 477–496, 2006.
S. Sutarno, R. F. Abdullah, and R. Passarella, “Identifikasi Tanaman Buah Berdasarkan Fitur Bentuk, Warna dan Tekstur Daun Berbasis Pengolahan Citra dan Learning Vector Quantization (LVQ),” in Annual Research Seminar (ARS), 2017, vol. 3, no. 1, pp. 65–70.
C. Sri Kusuma Aditya, M. Hani’ah, R. R. Bintana, and N. Suciati, “Batik classification using neural network with gray level co-occurence matrix and statistical color feature extraction,” in 2015 International Conference on Information & Communication Technology and Systems (ICTS), 2015, pp. 163–168. doi: 10.1109/ICTS.2015.7379892.
C. W. D. de Almeida, R. M. C. R. de Souza, and A. L. B. Candeias, “Texture classification based on co -occurrence matrix and self-organizing map,” in 2010 IEEE International Conference on Systems, Man and Cybernetics, 2010, pp. 2487–2491. doi: 10.1109/ICSMC.2010.5641934.
A. Minarno and N. Suciati, “Batik Image Retrieval Based on Color Difference Histogram and Gray Level Co-Occurrence Matrix,” TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 12, p. 597, Nov. 2014, doi: 10.12928/v12i3.80.
H. Syahputra and A. Harjoko, “Klasifikasi Varietas Tanaman Kelengkeng Berdasarkan Morfologi Daun Menggunakan Backpropagation Neural Network dan Probabilistic Neural Network,” IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 5, no. 3, pp. 11–16, 2011.
I. Jamaliah, R. N. Whidhiasih, and M. Maimunah, “Identifikasi Jenis Daun Tanaman Obat Hipertensi Berdasarkan Citra Rgb Menggunakan Jaringan Syaraf Tiruan,” PIKSEL: Penelitian Ilmu Komputer Sistem Embedded and Logic, vol. 5, no. 1, pp. 1–11, 2017.
F. Y. Manik, “Identifikasi Penyakit Daun Jabon Berdasarkan Ciri Morfologi Menggunakan Support Vector Mechine (Svm).,” Bogor Agricultural University (IPB), 2015.
M. Benco, R. Hudec, P. Kamencay, M. Zachariasova, and S. Matuska, “An Advanced Approach to Extraction of Colour Texture Features Based on GLCM,” Int J Adv Robot Syst, vol. 11, no. 7, p. 104, Jan. 2014, doi: 10.5772/58692.
D. P. Patil, S. R. Kurkute, P. S. Sonar, and S. I. Antonov, “An advanced method for chilli plant disease detection using image processing,” in 52nd International Scientific Conference On Information, Communication and Energy Systems and Technologies, Niš, Serbia, 2017, pp. 309–313.
J. Jamaludin, C. Rozikin, and A. S. Y. Irawan, “Klasifikasi Jenis Buah Mangga dengan Metode Backpropagation,” Techné: Jurnal Ilmiah Elektroteknika, vol. 20, no. 1, pp. 1–12, 2021.
A. H. Tandrian and A. Kusnadi, “Pengenalan pola tulang daun dengan jaringan syaraf tiruan backpropagation,” Ultima Computing: Jurnal Sistem Komputer, vol. 10, no. 2, pp. 53–58, 2018.
K. Syaban and A. Harjoko, “Klasifikasi varietas cabai berdasarkan morfologi daun menggunakan backpropagation neural network,” IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 10, no. 2, pp. 161–172, 2016.
F. A. Hizham, Y. Nurdiansyah, and others, “Implementasi metode backpropagation neural network (bnn) dalam sistem klasifikasi ketepatan waktu kelulusan mahasiswa (studi kasus: Program studi sistem informasi universitas jember),” Berkala Sainstek, vol. 6, no. 2, pp. 97–105, 2018.
A. Herdiansah, R. I. Borman, D. Nurnaningsih, A. A. J. Sinlae, and R. R. al Hakim, “Klasifikasi Citra Daun Herbal Dengan Menggunakan Backpropagation Neural Networks Berdasarkan Ekstraksi Ciri Bentuk,” JURIKOM (Jurnal Riset Komputer), vol. 9, no. 2, pp. 388–395, 2022.
R. C. Gonzalez and R. E. (Richard E. Woods, Digital image processing, Fourth Edition. Ney York: Pearson, 2018.
A. Kadir, “Teori dan Aplikasi Pengolahan Citra,” 2013. [Online]. Available: https://www.researchgate.net/publication/236673073
P. Prasetyawan, I. Ahmad, R. I. Borman, Y. A. Pahlevi, D. E. Kurniawan, and others, “Classification of the Period Undergraduate Study Using Back-propagation Neural Network,” in 2018 International Conference on Applied Engineering (ICAE), 2018, pp. 1–5.
S. Setti and A. Wanto, “Analysis of Backpropagation Algorithm in Predicting the Most Number of Internet Users in the World,” Jurnal Online Informatika, vol. 3, no. 2, pp. 110–115, 2019.
R. I. Borman and B. Priyopradono, “Implementasi Penerjemah Bahasa Isyarat Pada Bahasa Isyarat Indonesia (BISINDO) Dengan Metode Principal Component Analysis (PCA),” Jurnal Informatika: Jurnal Pengembangan IT, vol. 3, no. 1, pp. 103–108, 2018.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Mohammad Waail Al Wajieh, Bayuda Luqman Al-Farisi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
COPYRIGHT NOTICE
Authors retain copyright and grant the journal right of first publication and this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
All articles in this journal may be disseminated by listing valid sources and the title of the article should not be omitted. The content of the article is liable to the author.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
In the dissemination of articles, the author must declare https://proceedings.unimal.ac.id/micoms/index as the first party to publish the article.