Application of the K-Medoids Clustering Method for Grouping High-Risk Areas of Violence Against Women and Children

Authors

  • Annisa Afrilia Zahra Annisa Universitas Malikussaleh
  • Rozzi Kesuma Dinata Universitas Malikussaleh
  • Maryana Universitas Malikussaleh

Keywords:

clustering, k-medoids, davies-bouldin index, violence

Abstract

Violence against women and children has been increasing in both quantity and variety, necessitating special attention. This study aims to cluster areas prone to violence against women and children in North Aceh using the K-Medoids Clustering method. The data used includes physical, sexual, exploitation, and neglect violence, obtained from 542 villages sourced from Unit II PPA Polres North Aceh for the period of 2021-2023. The clustering is categorized into three clusters: very prone, prone, and not prone. The results show that in 2021, there were 16 very prone villages, 22 prone villages, and 506 not prone villages, with the smallest DBI value of 0.12263 from 8 trials. In 2022, there were 22 very prone villages, 18 prone villages, and 502 not prone villages, with a DBI value of 0.10517 from 10 trials. In 2023, there were 15 very prone villages, 11 prone villages, and 516 not prone villages, with a DBI value of 0.21408 from 6 trials. The developed web-based system, using PHP and UML, is expected to assist authorities in preventing and addressing violence in prone areas, thereby reducing the incidence of violence in North Aceh.

References

[1] H. Haryati and Sekar Ayu Aryani, “Konseling Multikultural Dengan Terapi Feminis Dalam KDRT Pada Perempuan,” J-CEKI J. Cendekia Ilm., vol. 1, no. 6, pp. 809–816, 2022, doi: 10.56799/jceki.v1i6.1009.

[2] Asmulyadi, “Rekap Kasus Kekerasan Yang Ditangani Oleh Lembaga Layanan (Januari - Desember 2023),” DPPPA Aceh, 2024. https://dinaspppa.acehprov.go.id/berita/kategori/rekap-kekerasan/rekap-kasus-kekerasan-yang-ditangani-oleh-lembaga-layanan-januari-desember-2023

[3] N. Adawiyah, N. Sulistiyowati, and M. Jajuli, “Klasterisasi Kasus Kekerasan Terhadap Anak dan Perempuan Berdasarkan Algoritma K-Means,” Gener. J., vol. 5, no. 2, pp. 69–80, 2021, doi: 10.29407/gj.v5i2.15995.

[4] N. Ulfauza and Z. Yunizar, “Clustering Status Pemberian Imunisasi Dasar Di Dinas Kesehatan Kabupaten Bireuen Menggunakan Metode K-Medoids,” pp. 1–5, 2022.

[5] R. K. Dinata, Furqan, and S. Retno, “Pengelompokan daerah padat penduduk untuk penentuan kawasan perumahan di kota lhokseumawe menggunakan k-medoids clustering,” J. Elektron. dan Teknol. Inf., vol. 4, no. 1, pp. 2721–9380, 2023.

[6] S. I. Murpratiwi, I. G. Agung Indrawan, and A. Aranta, “Analisis Pemilihan Cluster Optimal Dalam Segmentasi Pelanggan Toko Retail,” J. Pendidik. Teknol. dan Kejuru., vol. 18, no. 2, p. 152, 2021, doi: 10.23887/jptk-undiksha.v18i2.37426.

[7] I. W. Septiani, A. C. Fauzan, and M. M. Huda, “Implementasi Algoritma K-Medoids Dengan Evaluasi Davies-Bouldin-Index Untuk Klasterisasi Harapan Hidup Pasca Operasi Pada Pasien Penderita Kanker Paru-Paru,” J. Sist. Komput. dan Inform., vol. 3, no. 4, p. 556, 2022, doi: 10.30865/json.v3i4.4055.

Downloads

Published

2024-12-27