Poverty Level Clustering in Districts/Cities Using the K-Medoids Method Based on Population Data
Keywords:
Clustering, K-Medoid, PovertyAbstract
Poverty is a serious problem that hinders economic development, especially in developing countries like Indonesia. Aceh Province, especially Bireuen, Aceh Utara, and Lhokseumawe City have significant poverty rates due to high population and limited job opportunities. The K-Medoids algorithm used in this research works well in clustering the sub-districts in the region, with the aim of assisting the government in making more effective decisions. The implementation results show the clustering for the poverty rate in Bireuen in 2021 obtained C1 58.82%, C2 29.41%, C3 11.76%, in 2022 obtained C1 58.82%, C2 29.41%, C3 11.76%, in 2023 obtained C1 64.71%, C2 17.65%, C3 17.65%. In Aceh Utara District, C1 62.96% was obtained, C2 33.33%, C3 3.70%, in 2022 C1 62.96%, C2 33.33%, C3 3.70%, in 2023 C1 51%, C2 44.44%, C3 3.70%. In the city of Lhokseumawe City obtained C1 25%, C2 50%, C3 25%, in 2022 C1 25%, C2 50%, C3 25%, in 2023 C1 25%, C2 25%, C3 50%. The percentage of these results shows that the poverty rate in the three regions increases every year and this requires special attention from the government to minimize the level of poverty through increasing employment, controlling the birth rate, and cash and non-cash assistance programs for poor families.
References
[1] Badan Pusat Statistik Provinsi Aceh, (2024) Provinsi Aceh Dalam Angka 2024. Aceh: BPS Provinsi Aceh.
[2] I. Hidayat, E. Darnila, And Y. Afrillia, (2023) “Clustering Zonasi Daerah Rawan Bencana Alam Di Kabupaten Mandailing Natal Menggunakan Algoritma K-Means,” Vol. 7, No. 3, Pp. 1218–1226, Doi: 10.33379/Gtech.V7i3.2880.
[3] C. Zai, (2022) “Implementasi Data Mining Sebagai Pengolahan Data,” Vol. 2, No. 3, Pp. 1–12.
[4] N. P. Dharshinni And C. Fandi, (2022).“Penerapan Metode K-Medoids Clustering Untuk Mengelompokkan Ketahanan Pangan,” Vol. 6, Pp. 2301–2308, Doi: 10.30865/Mib.V6i4.4939.
[5] A. Astasia, (2020). “Analisis Cluster Kemiskinan Dan Indeks Pembangunan Manusia Di Indonesia Dengan K-Medoids,” Vol. 4, Pp. 1–8.
[6] Lina Mardiana Harahap, W. Fuadi, L. Rosnita, E. Darnila, And R. Meiyanti, (2022). “Klastering Sayuran Unggulan Menggunakan Clustering Of Featured Vegetables Using The K-Means Algorithm,” Vol. 8, Pp. 567–579.
[7] Gustientiedina, M. H. Adiya, And Y. Desnelita, (2019). “Penerapan Algoritma K-Means Untuk Clustering Data Obat- Obatan Pada Rsud Pekanbaru,” Vol. 01, Pp. 17–24, Doi: 10.25077/ Teknosi.V5i1.2019.17-24.
[8] P. N. Safitri, R. Aristawidya, And S. B. Faradilla, (2021). “Klasterisasi Faktor-Faktor Kemiskinan Di Provinsi Jawa Barat Menggunakan K-Medoids Clustering,” Vol. 4, No. 2, Pp. 75–80, Doi: //Doi.Org/10.32665/James.V4i2.242.
[9] T. Ramayanti, E. Haerani, And L. Oktavia, (2023). “Penerapan Algoritma K-Medoids Pada Clustering Penerima Bantuan Pangan Non Tunai ( Bpnt ),” Vol. 7, Pp. 1287–1296, Doi: 10.30865/Mib.V7i3.6475.
[10] T. N. P. Siti Nurlaela, Aji Primajaya, (2020). “Algoritma K-Medoids Untuk Clustering Penyakit Maag Di Kabupaten Karawang,” Vol. 12, No. 2, Pp. 56–62, Https://Doi.Org/10.36723/Juri.V12i2.234.
[11] Y. Diana And F. Hadi, (2023). “Analisa Penjualan Menggunakan Algoritma K-Medoids Untuk Mengoptimalkan Penjualan Barang,” Vol. 7, No. 1, Pp. 97–103, Https://Doi.Org/10.35145/Joisie.V7i1.2905.
[12] Fajriana, (2021). “Analisis Algoritma K-Medoids Pada Sistem Klasterisasi Produksi Perikanan Tangkap Kabupaten Aceh Utara,” Vol. 7, No. 2, Pp. 263–269, Doi: Http://Dx.Doi.Org/10.26418/Jp.V7i2.47795.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Cut Syahira Salsabila, Eva Darnila, Cut Agusniar
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright Notice
Authors published in this journal agree to the following terms:
1. The copyright of each article is retained by the author (s).
2. The author grants the journal the first publication rights with the work simultaneously licensed under the Creative Commons Attribution License, allowing others to share the work with an acknowledgment of authorship and the initial publication in this journal.
3. Authors may enter into separate additional contractual agreements for the non-exclusive distribution of published journal versions of the work (for example, posting them to institutional repositories or publishing them in a book), with acknowledgment of their initial publication in this journal.
4. Authors are permitted and encouraged to post their work online (For example in the Institutional Repository or on their website) before and during the submission process, as this can lead to productive exchanges, as well as earlier and larger citations of published work.
5. Articles and all related material published are distributed under a Creative Commons Attribution-ShareAlike 4.0 International License.