Poverty Level Clustering in Districts/Cities Using the K-Medoids Method Based on Population Data

Authors

  • Cut Syahira Salsabila Universitas Malikussaleh
  • Eva Darnila Department of Informatics, Universitas Malikussaleh, Bukit Indah, Lhokseumawe, 24353, Indonesia
  • Cut Agusniar Department of Informatics, Universitas Malikussaleh, Bukit Indah, Lhokseumawe 24353, Indonesia

Keywords:

Clustering, K-Medoid, Poverty

Abstract

Poverty is a serious problem that hinders economic development, especially in developing countries like Indonesia. Aceh Province, especially Bireuen, Aceh Utara, and Lhokseumawe City have significant poverty rates due to high population and limited job opportunities. The K-Medoids algorithm used in this research works well in clustering the sub-districts in the region, with the aim of assisting the government in making more effective decisions. The implementation results show the clustering for the poverty rate in Bireuen in 2021 obtained C1 58.82%, C2 29.41%, C3 11.76%, in 2022 obtained C1 58.82%, C2 29.41%, C3 11.76%, in 2023 obtained C1 64.71%, C2 17.65%, C3 17.65%. In  Aceh Utara District, C1 62.96% was obtained, C2 33.33%, C3 3.70%, in 2022 C1 62.96%, C2 33.33%, C3 3.70%, in 2023 C1 51%, C2 44.44%, C3 3.70%. In the city of Lhokseumawe City obtained C1 25%, C2 50%, C3 25%, in 2022 C1 25%, C2 50%, C3 25%, in 2023 C1 25%, C2 25%, C3 50%. The percentage of these results shows that the poverty rate in the three regions increases every year and this requires special attention from the government to minimize the level of poverty through increasing employment, controlling the birth rate, and cash and non-cash assistance programs for poor families.

References

[1] Badan Pusat Statistik Provinsi Aceh, (2024) Provinsi Aceh Dalam Angka 2024. Aceh: BPS Provinsi Aceh.

[2] I. Hidayat, E. Darnila, And Y. Afrillia, (2023) “Clustering Zonasi Daerah Rawan Bencana Alam Di Kabupaten Mandailing Natal Menggunakan Algoritma K-Means,” Vol. 7, No. 3, Pp. 1218–1226, Doi: 10.33379/Gtech.V7i3.2880.

[3] C. Zai, (2022) “Implementasi Data Mining Sebagai Pengolahan Data,” Vol. 2, No. 3, Pp. 1–12.

[4] N. P. Dharshinni And C. Fandi, (2022).“Penerapan Metode K-Medoids Clustering Untuk Mengelompokkan Ketahanan Pangan,” Vol. 6, Pp. 2301–2308, Doi: 10.30865/Mib.V6i4.4939.

[5] A. Astasia, (2020). “Analisis Cluster Kemiskinan Dan Indeks Pembangunan Manusia Di Indonesia Dengan K-Medoids,” Vol. 4, Pp. 1–8.

[6] Lina Mardiana Harahap, W. Fuadi, L. Rosnita, E. Darnila, And R. Meiyanti, (2022). “Klastering Sayuran Unggulan Menggunakan Clustering Of Featured Vegetables Using The K-Means Algorithm,” Vol. 8, Pp. 567–579.

[7] Gustientiedina, M. H. Adiya, And Y. Desnelita, (2019). “Penerapan Algoritma K-Means Untuk Clustering Data Obat- Obatan Pada Rsud Pekanbaru,” Vol. 01, Pp. 17–24, Doi: 10.25077/ Teknosi.V5i1.2019.17-24.

[8] P. N. Safitri, R. Aristawidya, And S. B. Faradilla, (2021). “Klasterisasi Faktor-Faktor Kemiskinan Di Provinsi Jawa Barat Menggunakan K-Medoids Clustering,” Vol. 4, No. 2, Pp. 75–80, Doi: //Doi.Org/10.32665/James.V4i2.242.

[9] T. Ramayanti, E. Haerani, And L. Oktavia, (2023). “Penerapan Algoritma K-Medoids Pada Clustering Penerima Bantuan Pangan Non Tunai ( Bpnt ),” Vol. 7, Pp. 1287–1296, Doi: 10.30865/Mib.V7i3.6475.

[10] T. N. P. Siti Nurlaela, Aji Primajaya, (2020). “Algoritma K-Medoids Untuk Clustering Penyakit Maag Di Kabupaten Karawang,” Vol. 12, No. 2, Pp. 56–62, Https://Doi.Org/10.36723/Juri.V12i2.234.

[11] Y. Diana And F. Hadi, (2023). “Analisa Penjualan Menggunakan Algoritma K-Medoids Untuk Mengoptimalkan Penjualan Barang,” Vol. 7, No. 1, Pp. 97–103, Https://Doi.Org/10.35145/Joisie.V7i1.2905.

[12] Fajriana, (2021). “Analisis Algoritma K-Medoids Pada Sistem Klasterisasi Produksi Perikanan Tangkap Kabupaten Aceh Utara,” Vol. 7, No. 2, Pp. 263–269, Doi: Http://Dx.Doi.Org/10.26418/Jp.V7i2.47795.

Downloads

Published

2024-12-27