Application Of Data Mining For Classification Of BLT-DD Recipients Using The Support Vector Machine Method

Authors

  • Meliza Putri Universitas Malikussaleh
  • Bustami Universitas Malikussaleh
  • Ar Razi

Keywords:

Support Vector Machine, BLT-DD, classification, socio-economic data, data mining

Abstract

This study focuses on the application of the Support Vector Machine (SVM) algorithm for classifying recipients who are eligible to receive Direct Cash Assistance from the Village Fund (BLT-DD) in Nurussalam District, East Aceh Regency. The background of this research is the difficulty in identifying households eligible for BLT-DD due to increasing poverty and economic inequality exacerbated by the COVID-19 pandemic. This study aims to address this issue by utilizing the SVM algorithm, which can separate household data into two categories: "Eligible" and "Not Eligible." A total of 550 data points from Nurussalam District were used in this study, with 400 data points for training and 150 data points for testing. In the training data, 322 households (80.5%) were classified as "Eligible," while 78 households (19.5%) were categorized as "Not Eligible." The data collected includes variables such as household income, type of employment, education level, history of chronic disease, and home ownership status. After preprocessing the data, such as normalization and encoding, the SVM model was trained to classify BLT-DD recipients. In the testing data, 128 data points (85.33%) were classified as "Eligible," while 22 data points (14.67%) were classified as "Not Eligible." Further analysis of village distribution in Nurussalam District shows that some villages have a high percentage of eligible recipients, such as Blang Rambong and Alue Jagat, with 100% of recipients classified as "Eligible." Other villages, such as Arul Pinang and Alue Dua Muka O, show more varied eligibility rates, with 71.43% and 72.73% classified as "Eligible," respectively. In conclusion, the SVM algorithm provides an effective approach in determining the eligibility of BLT-DD recipients, helping the government to distribute assistance more accurately and efficiently in Nurussalam District.

References

[1] Amin, H. (2022). Pengelolaan Alokasi Dana Desa (ADD) Terhadap Pembangunan Gampong. Journal of Social and Policy Issues, 2, 71–76. https://doi.org/10.58835/jspi.v2i2.42

[2] Arief, M. (2019). Klasifikasi Kematangan Buah Jeruk Berdasarkan Fitur Warna Menggunakan Metode SVM. Jurnal Ilmu Komputer Dan Desain Komunikasi Visual, 4(1), 9–16.

[3] Ha, J., Kambe, M., & Pe, J. (2011). Data Mining: Concepts and Techniques. In Data Mining: Concepts and Techniques. https://doi.org/10.1016/C2009-0- 61819-5

[4] Hariandja, T. R., & Budiman, N. T. (2020). Pelaksanaan Bantuan Langsung. Indonesian Journal of Law and Islamic Law (IJLIL), 2, 271–293.

[5] Nurdin, & Astika, D. (2015). Penerapan Data Mining Untuk Menganalisis Penjualan Barang Dengan Pada Supermarket Sejahtera Lhokseumawe. 6(1), 134–155. https://doi.org/10.29103/TECHSI.V7I1.

[6] Salam, R. R., Jamil, M. F., Ibrahim, Y., Rahmaddeni, R., Soni, S., & Herianto, H. (2023). Analisis Sentimen Terhadap Bantuan Langsung Tunai (BLT) Bahan Bakar Minyak (BBM) Menggunakan Support Vector Machine. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 3(1), 27–35. https://doi.org/10.57152/malcom.v3i1.590

[7] Sallaby, A. F., & Kanedi, I. (2020). Perancangan Sistem Informasi Jadwal Dokter Menggunakan Framework Codeigniter. Jurnal Media Infotama, 16(1), 48–53. https://doi.org/10.37676/jmi.v16i1.1121

[8] Sari, L. P., Kadir, A., Marbun, U., Tinggi, S., Kesehatan, I., & Hasanuddin, N. (2024). Faktor yang Mempengaruhi Minat Keluarga dalam Memilih Pelayanan Home Care pada Bayi. 19(1), 316–324.

[9] Sutanto, H., & Hardiningsih, P. (2021). Akuntabilitas Pengelolaan BLT-Dana Desa Pada Masa Pandemi Covid-19. InFestasi, 17(1), InPres. https://doi.org/10.21107/infestasi.v17i1.9932

[10] Suwanda, R., Efendi, S., & Budhiarti, E. (2019). Kinerja Algoritma Support Vector Machine Berdasarkan Ekstraksi Sinyal Suara Dengan Mel-Frequency Cepstrum Coefficients Pada Pelafadzan Ayat Al-Quran. 4(2), 2502–7131.

[11] Syaputra, A., Muslim, B., Prawira, N. S., & Edowinsyah. (2023). Implementasi Metode Support Vector Machine Dengan Algoritma Genetika Pada Prediksi Konsumsi Energi Untuk Gedung Beton Bertulang. Faktor Exacta, 16(2), 142– 153. https://doi.org/10.30998/faktorexacta.v16i2.16657

[12] Utomo, D. P., & Mesran, M. (2020). Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung. Jurnal Media Informatika Budidarma, 4(2), 437. https://doi.org/10.30865/mib.v4i2.2080

[13] Widyawati, R., Suyono, E., Hasanah, U., & Setiawan, W. (2022). Pengaruh Penyaluran Bantuan Langsung Tunai (Blt), Persepsi Status Wilayah, Dan Standar Hidup Terhadap Kesejahteraan Masyarakat Desa Baseh, Kecamatan Kedungbanteng, Kabupaten Banyumas. MidYear National Conference and Call for Paper, 1(1), 723–735.

[14] Yeni Kustiyahningsih, D. R. A. (2011). Pemrograman Basis Data Berbasis Web Menggunakan PHP & MySQL. Yogyakarta: Graha Ilmu, 8–33.

Downloads

Published

2024-12-27

Most read articles by the same author(s)