The Sentiment Analysis of Comments on Youtube Channel Beauty Vlogger in Indonesian Language Using Support Vector Machine Method

Authors

  • Siti Chairani Siregar Department of Informatics, Malikussaleh University
  • Rizal Tjuet Adek Department of Informatics, Malikussaleh University
  • Zahratul Fitri Department of Informatics, Malikussaleh University

Keywords:

YouTube, Beauty Vlogger, Sentiment Analysis, Support Vector Machine, TF-IDF

Abstract

YouTube has become a major platform for beauty vloggers to share product reviews, where user comments provide valuable feedback. This research aims to analyze the sentiment in comments from Indonesian speaking users on beauty vlogger channels, focusing on reviews for powder and skincare products, to capture the positive or negative sentiments. The study utilizes the Support Vector Machine (SVM) method for classification and the TF-IDF weighting technique, analyzing 1,000 comments split into 800 training data and 200 testing data. Sentiment classification was performed post-text preprocessing. The results demonstrate a model accuracy of 97%, with a precision of 98% and recall of 96%, indicating that SVM effectively identifies sentiment in user comments. This system provides valuable insights for beauty vloggers to understand product feedback and contributes to the development of similar applications in other industries.

References

[1] Adi, S., & Wintarti, A. (2022). Comparison Of Support Vector Machine (Svm), K-Nearest Neighbors (Knn), And Random Forest (Rf) For Heart Disease Prediction. Mathunesa: Jurnal Ilmiah Matematika, 10(2), 258–268. Https://Doi.Org/10.26740/Mathunesa.V10n2.P258-268.

[2] Anshari, R. A. L., Alam, S., & Hafid, M. T. (2023). Digital Payment Sentiment Analysis On Google Play Store Reviews Using Support Vector Machine. Jurnal Ilmiah Teknik Dan Ilmu Komputer, 2(3), 118–128.

[3] Bei, F., & Sudin, S. (2021). Sentiment Analysis Of Online Ticket Applications In The Play Store Using Support Vector Machine (Svm). Sismatik, 1(1), 91–97.

[4] Munthe, M. P., Ansori, A. S. R., & Fauziyah, N. (2021). Sentiment Analysis On Indonesian Language Food Vlogger Comments On Youtube Using Naïve Bayes Algorithm. Eproceedings Of Engineering, 8(6), 11909–11916. Https://Openlibrarypublications.Telkomuniversity.Ac.Id/Index.Php/Engineering/Article/View/16897.

[5] Rizal, R. A., Girsang, I. S., & Prasetiyo, S. A. (2019). Face Classification Using Support Vector Machine (Svm). Remik (Riset Dan E-Jurnal Manajemen Informatika Komputer), 3(2), 1. Https://Doi.Org/10.33395/Remik.V3i2.10080.

[6] Sakti, S. P. H., & Adam, M. (2020). Application Of Svm Algorithm In Data Mining For Learning Outcome Analysis (Case Study: Software Engineering). Seminar Nasional Informatika, 2020, 291–300.

[7] Switrayana, I. N., Ashadi, D., Hairani, H., & Aminuddin, A. (2023). Sentiment Analysis And Topic Modeling Of Kitabisa Application Using Support Vector Machine (Svm) And Smote-Tomek Links Methods. International Journal Of Engineering And Computer Science Applications, 2(2), 81–91. Https://Doi.Org/10.30812/Ijecsa.V2i2.3406.

[8] Sya’bani, M. M., & Umilasari, R. (2018). Application Of Cosine Similarity And Tf/Idf Weighting For Synopsis Classification In Jember District Library. Justindo (Jurnal Sistem Dan Teknologi Informasi Indonesia), 3(1), 31–42. Http://Jurnal.Unmuhjember.Ac.Id/Index.Php/Justindo/Article/View/2345.

[9] Mustakim, H., & Priyanta, S. (2022). Aspect-Based Sentiment Analysis Of Kai Access Reviews Using Nbc And Svm. Ijccs (Indonesian Journal Of Computing And Cybernetics Systems), 16(2), 113. Https://Doi.Org/10.22146/Ijccs.68903.

[10] Permana, D. S., & Silvanie, A. (2021). Heart Disease Prediction Using Support Vector Machine And Python Based On Cleveland Database. Junif: Jurnal Nasional Informatika, 2(1), 29–34.

Downloads

Published

2024-12-27