The Implementation of Support Vector Machine to Analyze Compliance of Land and Building Taxpayers

Authors

  • Nurul Nafisa Universitas Malikussaleh
  • Rozi Kesuma Dinata Universitas Malikussaleh
  • Rizki Suwanda Universitas Malikussaleh

Keywords:

Taxpayer Compliance, Land and Building Tax, Support Vector Machine

Abstract

Land and Building Tax (LBT) is an important source of revenue for local governments, supporting development and community welfare. However, low taxpayer compliance rates often pose a challenge in achieving the targets for Local Own-Source Revenue (LOSR). This study aims to develop a data-driven classification system to map areas with varying levels of LBT taxpayer compliance in Lhokseumawe City and to implement the Support Vector Machine (SVM) method to improve the accuracy of predicting taxpayer compliance. The research data was obtained from the Regional Financial Management Agency (RFMA) of Lhokseumawe City, encompassing LBT data from 2021 to 2023, with variables such as principal amount, penalties, total payments, due dates, and payment dates. This classification system divides taxpayers into two categories: Compliant and Non-Compliant. The results of testing the SVM model indicate that Banda Sakti sub-district has a compliance rate of 98%, Muara Satu has a compliance rate of 99%, Muara Dua has a compliance rate of 99%, and Blang Mangat has a compliance rate of 100%. The accuracy metrics from the implementation of the Support Vector Machine method for assessing land and building tax compliance show a Precision of 86%, a Recall of 100%, and an Accuracy of 86%. By applying the SVM method, it is hoped that there will be an increase in efficiency in the tax collection and management processes, thereby optimally increasing Local Own-Source Revenue (LOSR) and supporting better regional development.

References

[1] W. D. Febrian and R. Ristiliana, “Pengaruh Pengetahuan dan Kesadaran Wajib Pajak Terhadap Kepatuhan Wajib Pajak dalam Membayar Pajak Bumi dan Bangunan (PBB) pada Kantor Badan Pendapatan Daerah Kota Pekanbaru,” Eklektik J. Pendidik. Ekon. dan Kewirausahaan, vol. 2, no. 1, hal. 181, 2019, doi: 10.24014/ekl.v2i1.7563.

[2] A. R. Shaumi, M. F. Ali, and M. T. A. M. Simbolon, “Penerapan Data Mining Menggunakan Metode Teknik Classification Untuk Melihat Penerapan Data Mining Menggunakan Metode Teknik Classification Untuk,” JUKI J. Komput. dan Inform., vol. 4, no. 2, hal. 171–182, 2022, [Daring]. Tersedia pada: www.pajak.go.id

[3] S. Y. Pangestu, Y. Astuti, and L. D. Farida, “ALGORITMA SUPPORT VECTOR MACHINE UNTUK KLASIFIKASI SIKAP POLITIK TERHADAP PARTAI Politik Indonesia,” J. Mantik Penusa, vol. 3, no. 1, hal. 236–241, 2019, [Daring]. Tersedia pada: https://t.co/eF

[4] O. H. Rahman, Gunawan Abdillah, and Agus Komarudin, “Klasifikasi Ujaran Kebencian pada Media Sosial Twitter Menggunakan Support Vector Machine,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 1, hal. 17–23, 2021, doi: 10.29207/resti.v5i1.2700.

[5] H. Pratiwi, M. Muhaimin, and W. O. Rayyani, “Kontribusi Pajak Bumi Dan Bangunan (Pbb) Dalam Meningkatkan Penerimaan Pajak Daerah,” Amnesty J. Ris. Perpajak., vol. 3, no. 1, hal. 24–30, 2020, doi: 10.26618/jrp.v3i1.3402.

[6] M. Y. Noor, “Efektivitas Penerimaan Pajak Bumi Dan Bangunan (Pbb-P2) Di Desa Tibona Kecamatan Bulukumpa Kabupaten Bulukumba,” Amnesty J. Ris. Perpajak., vol. 3, no. 2, hal. 135–150, 2020, doi: 10.26618/jrp.v3i2.4409.

[7] S. Sainang and A. W. Aji, “Pengaruh Persepsi Kemanfaatan, Persepsi Kemudahan Dan Kepuasan Pengguna Terhadap Minat Membayar Pajak Bumi Dan Bangunan (Pbb) Menggunakan Shopeepay,” Amnesty J. Ris. Perpajak., vol. 4, no. 1, hal. 129–140, 2021, doi: 10.26618/jrp.v4i1.6317.

[8] N. P. Rahmayanti, R. M. Arini, S. D. Indiraswari, and R. R. Dara, “Pengaruh Pengetahuan Pajak, dan Sanksi Pajak Terhadap Kepatuhan Wajib Pajak,” J. Komun. Bisnis dan Manaj., vol. 10, no. 2, hal. 290–298, 2023, doi: 10.59422/margin.v1i02.125.

[9] R. Adawiyah, Y. Rahmawati, and I. Eprianto, “Literature Review: Pengaruh Sosialisasi Perpajakan, Sanksi Perpajakan, Pemahaman Peraturan Perpajakan Terhadap Kepatuhan Wajib Pajak,” J. Econ., vol. 2, no. 9, hal. 2310–2321, 2023, doi: 10.55681/economina.v2i9.812.

[10] A. Z. Praghakusma and N. Charibaldi, “Komparasi Fungsi Kernel Metode Support Vector Machine untuk Analisis Sentimen Instagram dan Twitter (Studi Kasus : Komisi Pemberantasan Korupsi),” JSTIE (Jurnal Sarj. Tek. Inform., vol. 9, no. 2, hal. 33–42, 2021, doi: 10.12928/jstie.v9i2.20181.

[11] N. Aula, M. Ula, and L. Rosnita, “Analisis Sentimen Review Customer Terhadap Perusahaan Ekspedisi Jne, J&T Express Dan Pos Indonesia Menggunakan Metode Support Vector Machine (Svm),” J. Informatics Comput. Sci., vol. 9, no. 1, hal. 81–86, 2023.

[12] S. Nurhaliza, Y. Yusra, and M. Fikry, “Klasifikasi Sentimen Masyarakat di Twitter Terhadap Kenaikan Harga BBM dengan Metode Support Vector Machine,” J. Sist. Komput. dan Inform., vol. 4, no. 4, hal. 586–593, 2023, doi: 10.30865/json.v4i4.6322.

[13] Fitrianingsih and B. Zuraeni, “Analisis Ramalan Cuaca di Sekupang, Kota Batam Menggunakan Algoritma Decision Tree dan Confusion Matrix,” J. Ekon. Pembang. dan Manaj., vol. 1, no. 3, hal. 15–26, 2024, [Daring]. Tersedia pada: https://ibnusinapublisher.org/index.php/EKOSPHERE

[14] R. K. Dinata, H. Akbar, and N. Hasdyna, “Algoritma K-Nearest Neighbor dengan Euclidean Distance dan Manhattan Distance untuk Klasifikasi Transportasi Bus,” Ilk. J. Ilm., vol. 12, no. 2, hal. 104–111, 2020, doi: 10.33096/ilkom.v12i2.539.104-111.

Downloads

Published

2024-12-27