Application Of Data Mining Using The Neural Network Backpropagation Method To Determine The Eligibility Of Smart Indonesia Program Scholarship Recipients
Keywords:
Data Mining, Classification, Neural Network BackpropagationAbstract
The government provides students from impoverished or vulnerable backgrounds with financial assistance, educational opportunities, and expanded access through this scholarship program. Underprivileged students at SD Negeri 04 Lembah Melintang are still selected manually by each homeroom instructor through the collection of student and student parent data. The dataset utilized is comprised of 407 data points, including 326 training data and 81 test data, collected from pupils at SD Negeri 04 Lembah Melintang between 2022 and 2024. The objective of this research is to develop, execute, and evaluate the Neural Network Backpropagation method for the classification of PIP scholarship eligibility determination. The following attributes are included in this study: the status of the father, the status of the mother, the income of the father and the income of the mother, the job of the father and the job of the mother, distance from home, number of dependents, and means of transportation, with the classification results Eligible and Ineligible. This research produces an accuracy rate of 95%, with Recall 90%, Precision 100% and F1-Score of 94%.
References
[1] A. Razi, “Klasifikasi Penerima Beasiswa Aceh Carong (Aceh Pintar) Di Universitas Malikussaleh Menggunakan Algoritma Knn (K-Nearest Neighbors),” Jurnal Tika, Vol. 7, No. 1, Pp. 79–84, Apr. 2022, Doi: https://doi.org/10.51179/tika.v7i1.1116.
[2] Y. Afrillia And S. Ramadani, “Sistem Informasi Pencarian Tata Letak Buku Pada Perpustakaan Menggunakan Metode Binary Search,” Jurnal Informatika Kaputama (Jik), Vol. 6, No. 1, Pp. 31–35, Jan. 2022, Doi: https://doi.org/10.59697/jik.v6i1.132.
[3] N. Hadianto, H. B. Novitasari, And A. Rahmawati, “Klasifikasi Peminjaman Nasabah Bank Menggunakan Metode Neural Network,” Jurnal Pilar Nusa Mandiri, Vol. 15, No. 2, Pp. 163–170, Sep. 2019, Doi: https://doi.org/10.33480/pilar.v15i2.658.
[4] N. Norhikmah And R. Rumini, “Klasifikasi Peminjaman Buku Menggunakan Neural Network Backpropagation,” Sistemasi, Vol. 9, No. 1, P. 1, Jan. 2020, Doi: https://doi.org/10.32520/stmsi.v9i1.562.
[5] S. S. M. S. Retno Tri Vulandari, Data Mining: Teori Dan Aplikasi Rapidminer. Penerbit Gaya Media, 2017. [Online]. Available: https://books.google.co.id/books?id=1EDZzwEACAAJ
[6] B. C. Octariadi, “Pengenalan Pola Tanda Tangan Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation,” Jurnal Teknoinfo, Vol. 14, No. 1, P. 15, Jan. 2020, Doi: https://doi.org/10.33365/jti.v14i1.462 .
[7] I. Hidayat, E. Darnila, And Y. Afrillia, “Clustering Zonasi Daerah Rawan Bencana Alam Di Kabupaten Mandailing Natal Menggunakan Algoritma K-Means,” G-Tech: Jurnal Teknologi Terapan, Vol. 7, No. 3, Pp. 1218–1226, Jul. 2023, Doi: https://doi.org/10.33379/gtech.v7i3.2880.
[8] N. Aulia, N. Suarna, And W. Prihartono, “Klasifikasi Penentuan Penerima Program Indnesia Pintar Di Krwilbidikcam Greged Menggunakan Algoritma C4.5,” Jati (Jurnal Mahasiswa Teknik Informatika), Vol. 7, No. 6, Pp. 3913–3919, Feb. 2024, Doi: https://doi.org/10.36040/jati.v7i6.8294.
[9] E. Y. Anggraeni, E. Risanto, Y. Basuki, D. Nofianto, A. A. C, And A. Offset, Pengantar Sistem Informasi. Penerbit Andi, 2017. [Online]. Available: https://books.google.co.id/books?id=8VNLDwAAQBAJ
[10] T. Hardoyo And E. H. P. Eko, “Klasifikasi Usaha Mikro Kecil Menengah Menggunakan Jaringan Syaraf Tiruan Backpropagation,” Konstelasi: Konvergensi Teknologi Dan Sistem Informasi, Vol. 2, No. 1, Apr. 2022, Doi: https://doi.org/10.24002/konstelasi.v2i1.5625.
[11] M. F. Syahputra Et Al., “Hypertensive Retinopathy Identification Through Retinal Fundus Image Using Backpropagation Neural Network,” J Phys Conf Ser, Vol. 978, P. 012106, Mar. 2018, Doi: https://doi.org/10.1088/1742-6596/978/1/012106.
[12] J. R. Prabowo, R. Santoso, And H. Yasin, “Implementasi Jaringan Syaraf Tiruan Backpropagation Dengan Algoritma Conjugate Gradient Untuk Klasifikasi Kondisi Rumah (Studi Kasus Di Kabupaten Cilacap Tahun 2018),” Jurnal Gaussian, Vol. 9, No. 1, Pp. 41–49, Feb. 2020, Doi: https://doi.org/10.14710/j.gauss.v9i1.27522.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Oriza Sativa, Yessy Afrillia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright Notice
Authors published in this journal agree to the following terms:
1. The copyright of each article is retained by the author (s).
2. The author grants the journal the first publication rights with the work simultaneously licensed under the Creative Commons Attribution License, allowing others to share the work with an acknowledgment of authorship and the initial publication in this journal.
3. Authors may enter into separate additional contractual agreements for the non-exclusive distribution of published journal versions of the work (for example, posting them to institutional repositories or publishing them in a book), with acknowledgment of their initial publication in this journal.
4. Authors are permitted and encouraged to post their work online (For example in the Institutional Repository or on their website) before and during the submission process, as this can lead to productive exchanges, as well as earlier and larger citations of published work.
5. Articles and all related material published are distributed under a Creative Commons Attribution-ShareAlike 4.0 International License.