Application of the Naïve Bayes Method in Optimizing Marketing Performance at PT. Semen Indonesia

Authors

  • Mahesa Reglisalo departmen of informatics malikussaleh university
  • Dahlan Abdullah
  • Yesy Afrillia

Keywords:

Naïve Bayes, marketing performance, PT. Semen Indonesia, data analysis, classification system, profit, market share

Abstract

This study examines the application of the Naïve Bayes method to improve marketing performance at PT. Semen Indonesia. In an increasingly competitive business environment, effective data management is crucial for strategic decision-making. Currently, PT. Semen Indonesia utilizes the SAP system to manage sales and financial data, but it lacks an automated system to analyze marketing performance. This research aims to develop a Naïve Bayes-based classification system to monitor marketing performance, considering attributes such as profit, market share, sales volume, and customer satisfaction. The Naïve Bayes method was chosen for its accuracy in handling large-scale data and its ability to provide fast and efficient predictions. Marketing performance data is processed using this method to categorize marketing performance as “good” or “poor.” The analysis results show that the developed system achieves a classification accuracy of 43.75% for the “good” category and 56.25% for the “poor” category. This system assists management in designing more effective marketing strategies by leveraging historical data to predict trends and market needs.

Keywords: Naïve Bayes, marketing performance, PT. Semen Indonesia, data analysis, classification system, profit, market share

References

[1] D. Dahri, F. Agus, and D. M. Khairina, “Metode Naive Bayes Untuk Penentuan Penerima Beasiswa Bidikmisi Universitas Mulawarman,” Inform. Mulawarman J. Ilm. Ilmu Komput., vol. 11, no. 2, p. 29, 2016, doi: 10.30872/jim.v11i2.211.

[2] A. Utaminingsih, “Pengaruh orientasi pasar, inovasi, dan kreativitas strategi pemasaran terhadap kinerja pemasaran pada UKM kerajinan rotan di Desa Teluk Wetan, Welahan, Jepara,” Media Ekon. Dan Manaj., vol. 31, no. 2, pp. 77–87, 2016.

[3] et al., “Implementasi Algoritma Naive Bayes Untuk Klasifikasi Penerima Beasiswa (Studi Kasus Universitas Hamzanwadi),” Infotek J. Inform. dan Teknol., vol. 6, no. 1, pp. 177–188, 2023, doi: 10.29408/jit.v6i1.7529.

[4] C. Fadlan, S. Ningsih, and A. P. Windarto, “Penerapan Metode Naïve Bayes Dalam Klasifikasi Kelayakan Keluarga Penerima Beras Rastra,” J. Tek. Inform. Musirawas, vol. 3, no. 1, p. 1, 2018, doi: 10.32767/jutim.v3i1.286.

[5] R. Nurul Arifin, “Implementasi Algoritma Frequent Pattern Growth (FP-GROWTH) Menentukan Asosiasi Antar Produk (Study KAsus Nadia Mart),” Dok. Karya Ilm., pp. 0–1, 2015.

[6] B. N. , T. R. , Syamsul Bahri, “Implementasi Data Mining Dengan Algoritma C4.5 Untuk Penjurusan Siswa (Studi Kasus: Sma Negeri 1 Pontianak),” Coding J. Komput. dan Apl., vol. 4, no. 3, 2016, doi: 10.26418/coding.v4i3.17034.

[7] Styawati, Nurkholis Andi, and Anjumi Krisma Nur, “Analisis Pola Transaksi Pelanggan Menggunakan Algoritme Apriori,” J. Sains Komput. Inform., vol. 5, no. 2, pp. 619–626, 2021.

[8] C. Darujati et al., “Pemanfaatan Teknik Supervised Untuk,” Text, vol. 16, no. 1, pp. 1–8, 2012.

[9] M. Furqan, M. K. Sastia H Wibowo, S. Kom, and E. Dedy Abdullah, ST. M, “Sistem Persediaan Obat Pada Puskesmas Menggunakan Metode Naive Bayes (Studi Kasus Puskesmas Talang Tinggi Seluma) Skripsi. Universits Muhammadiyah Bengkulu,” Univ. Muhamadiyah Bengkulu, vol. 18, no. 60, pp. 1–8, 2016.

[10] E. Darnila, M. Maryana, and M. Azmi, “Aplikasi Klasifikasi Status Gizi Balita Menggunakan Metode Naïve Bayes Berbasis Android,” METHOMIKA J. Manaj. Inform. dan Komputerisasi Akunt., vol. 5, no. 2, pp. 135–141, 2021, doi: 10.46880/jmika.vol5no2.pp135-141.

[11] A. Lutfi and Firmansyah, “Peningkatan Kinerja Pemasaran Umkm Berdasarkan Orientasi Kewirausahaan, Pengetahuan Pemasaran Dan Keadaan Lingkungan,” J. Bisnis, Manajemen, Dan Inform., vol. 18, no. II, pp. 86–102, 2021, doi: 10.26487/jbmi.v18i2.13977.

[12] M. Ridho Handoko, “Sistem Pakar Diagnosa Penyakit Selama Kehamilan Menggunakan Metode Naive Bayes Berbasis Web,” J. Teknol. dan Sist. Inf., vol. 2, no. 1, pp. 50–58, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/JTSI

[13] H. D. Wijaya and S. Dwiasnati, “Implementasi Data Mining dengan Algoritma Naïve Bayes pada Penjualan Obat,” J. Inform., vol. 7, no. 1, pp. 1–7, 2020, doi: 10.31311/ji.v7i1.6203.

Downloads

Published

2024-12-27